
Chapter 4

Database Design – The Brokerage System

Chapter Outline
4.1 Database Design – what does it gain you? …………………………..2
4.2 Overview of the Brokerage database ………………………………..2
4.3 The database design process ………………………………………3

4.3.1............. Identifying the Tables ………………………………………3
4.3.2............. Deciding What Fields Belong in the Tables ………………..5
4.3.3.................Selecting Primary Keys …………………………………..7
4.3.4................ Relating the Tables ……………………………………….8

4.4 Building our tables ………………………………………………8
4.5 Saving the Table …………………………………………………10
4.6 Input Masks ………………………………………………………10

4.6.1............. Masks related to letters and other non-numeric characters ..11
4.6.2...............Input Masks involving numbers ………………………….12
4.6.3...............Input masks with “literals” ……………………………….13

4.7 Validation Rules ………………………………………14
4.7.1................ The Validation Rule ……………………………………..15
4.7.2................ The Validation Text ……………………………………..15
4.7.3................ The Description ………………………………………….15

4.8 Building our other tables…………………………………………16
4.8.1............... Building the Broker Table ……………………………….16
4.8.2................ The Stock table ………………………………………….17
4.8.3................. The Trans table is a very active place! ………………….17

4.9 Setting Defaults: …………………………………………………17
4.10 Lookup Tables …………………………………………………18
4.11 Establishing the Relationships …………………………………21
4.12 Referential Integrity …………………………………………….23
4.13 Entering Some Sample Data ……………………………………24
4.14 Linking to Our Customer Photos ………………………………24
4.15 Summary ...26
 Just for Geeks – An Introduction to Normalization ……..………27

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

1

4.1 Database Design – what does it gain you?

The design of your database determines how useful it will be – done correctly, your
design will provide useful reports, answers to interesting questions, enforcement of
business rules and can even assist with data entry by validating data as it gets entered,
giving your data a standard, consistent look. Your design can actually provide Access
with a set of rules that help keep “bad” data out of your system. Whether bad data gets in
or not depends, in part, on your abilities as a database designer. Even as beginners, we
can take advantage of several tools provided by Access that watch data as it arrives and
prevent obvious errors. Some of these tools include

Each of these are fairly simple additions to our design and well worth the few minutes it
takes to get familiar with them.

In addition to introducing these new design features, this chapter also begins creating a
system that will be used throughout the database section of this book. We start with the
design of our tables and follow that with some refinements – specifically input masks,
validation rules and referential integrity. These three features will watch over our data
entry to help keep it clean. Cascading deletes and updates will help keep the database
clean once we have data in there. What’s cool about this is that Access does all the
work… once we establish a few rules. So, follow along as you and a few friends build a
database for a small brokerage firm.

4.2 Overview of the Brokerage database

Well, it’s been ten years since you and a few friends graduated with degrees in financial
services. Each of you have passed rigorous certifications in stocks, mutual funds and
insurance and have received licenses in Massachusetts, Rhode Island and Connecticut.
Your work for a large financial services firm has given you quite a bit of insider
knowledge about the investment business. Last Friday, after work, the three of you met
for dinner and began to plan the start of your own firm.

Input Masks

Validation Rules

Table Lookups

Defaults

Referential Integrity

Cascading Deletes and Updates.

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

2

Harry has been charged with finding the costs of the various financial research systems
you will need. He needs to line up the required purchases. These services provide
current stock prices, graphs of price and “return on investment” data as well as comments
by analysts who are specialists in each stock. The cost of these systems is fairly high but
you can’t provide investment advice without them – and we have the added benefit of
getting up-to-the-minute stock prices.

After bragging about your background with Microsoft Access, your buddies have
challenged you to build the customer database. That database will store data about each
customer and the stocks they own. The brokers will need a simple system for locating a
customer’s records and reviewing them on screen. There will also be reports of both
customer activity and broker activity. Initially, customers will be mailed their reports.
Our goal over the next few months is to enhance the system with a web interface that
provides customers with an online view of their accounts. Not only will our customers be
pleased with the convenience, but it will reduce our considerable mailing costs.

Not much can happen until the database tables have been designed and related to each
other – so that’s where we’ll start.

4.3 The database design process

There are four major steps in designing the database.

4.3.1 Identifying the Tables

Professional database developers follow a fairly involved process to help organize their
data into tables – they spend a lot of time at the design stage since a database with design
problems will be very difficult to work with. One of their techniques is to create entity
relationship diagrams. These “ER” diagrams attempt to identify the major objects
(entities) in the business and then look to see how these entities are related to each other.

The database designer will meet with management and others involved in creating the
new database. An understanding of the business is crucial to identifying the entities for

 Identify your tables

 Decide what fields go in which table

 Locate a primary Key for each table

 Find a way to relate the tables to each other

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

3

your ER diagram. In our case, the brokerage firm has three obvious entities. We have
our employees (Brokers), we have Customers and we have Stocks to sell.

Once your entities are identified, you normally have just discovered your tables! In our
case it looks like we’ll need a Customer table, a Stocks table, a Broker table.

A simple ER diagram shows how each of these entities is related to the others. Notice
how each entity is represented on the diagram along with a diamond shape identifying the
relationship. We think that Brokers are assigned to Customers and that Customers buy
Stocks. Further, we think that ONE Broker is assigned to MANY Customers. Reading
that relationship in the other direction, we think that each customer is assigned to only
ONE Broker. The diagram also suggests that a Customer can buy MANY stocks.

The process of building the “ER” diagram helps us focus on the big picture – before
getting bogged-down on the details of naming fields and selecting their lengths. If you
miss something at the broad “ER” view, the database is doomed to problems.

Have we missed anything? Let’s think about the relationship between Customers and
Stocks. Sure, a customer can buy many stocks – but isn’t it true that a Stock can be
owned by many customers? If that is true, then the relationship is not One-to-Many, but
is actually Many-to-Many (often written as “M:N”).

Knowing that we have a Many-to-Many relationship makes a big difference in our
design. Relational databases typically deal with these M:N relationships by adding a
connecting table – Access calls these Junction Tables (you’ll also see the names Bridge
and Linking tables used). I’ll create a junction table called “Transaction” that will
represent the list of stocks owned by each customer (I guess, in a way, I’m representing
the “buy” relationship). Customers can appear many times in the list of transactions and
stocks can appear many times.

Customer Stocks Buys 1 M

Broker

Assigned to

1

M

Customers
 Brokers
 Stocks

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

4

The junction table will contain the key fields from both the Customer and Stocks table.
In this way, it represents a link between these two tables. Notice how this junction table
breaks the Many-to-Many relationship into two One-to-Many relationships. Each
Customer is mentioned once in the Customer table – but can appear in the Transaction
table many times.

Without thinking our way through the ER diagram we might have missed the need for
this extra table.

The final ER diagram might include the fields associated with each entity. Database
people might refer to these as the attributes of the entities. To keep things manageable
I’ve left off the Broker table.

4.3.2 Deciding What Fields Belong in the Tables

Now that we have tables it’s time to decide what goes in them. Database professionals
use their entity relationship diagrams and a process called normalization. For us, two
simple rules will do nearly as well:
If an entity has a feature that occurs just once – then it probably goes in the table for that
entity. For example, Customers have one First Name, one Last Name and one Social
Security Number. You should also be careful to include only those fields that truly relate
to that entity – customers have names, addresses and phone numbers. Yes, they have a
broker, but should the broker’s phone number be in the Customer table? Is that phone
number truly a feature of a customer?
If an entity has a feature that repeats itself, that field normally goes in a separate table.
In our case, each customer can purchase stocks. What would happen if we stored the
customer’s stock holdings in the Customer table? If you provided a field for Stock you

Customer Transactions
“buys…”

Stocks 1 M 1 M

CustID

Name

Address

StockAbbr
CurrPrice

StockFull

PurPrice PurDate

Shares

CustID StockAbbr

Customer Transactions

Stocks 1 M 1 M

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

5

would be in trouble if they bought two stocks. Naturally, you could make Stock1 and
Stock2 fields. What if they bought 20 stocks? Well, you could make 20 fields (Stock1
through Stock20). Could you ever predict the maximum number of stocks a person
might buy? If you set up 20 fields named Stock, how much wasted space would there be
if most people only owned one or two stocks? The varying number of Stock fields also
makes calculations difficult since you are juggling 20 separate fields of data! If we
wanted a list of customers who bought IBM, you would need to test every one of the 20
Stock fields to determine whether a customer owned that stock.

Thinking back to the entity relationship concept, a stock really isn’t a feature of a

customer – another reason to keep it out of the Customer table.

Take a look at what we’ve decided to place in each table – argue with your instructor if
you think we’ve made a mistake. Notice how we’ve included CustID in both the
Customer and Trans tables. We did this in order to link these two tables together. Study
our table designs to anticipate other links we need to make.

Customer Table
Field Data Type Size Comment
CustID Text 5 Unique identifier for each customer, our Primary Key

– starts with a “C” followed by 4 digits
CFname Text 10 Customer’s given name
CLname Text 15 Customer’s family name
Street Text 20 Street name including number
City Text 20
State Text 2 Both characters should be uppercase
Zip Text 5 We can require all 5 digits…
Phone Text 13 13 characters if you count the parentheses and

hyphen that a complete phone number would have
Photo Ole

Object
 Customer photos are stored as Jpeg images – this

field establishes links to the images. NOTE: getting
images into your table can be tricky – see ‘Geeks’ for
Chapter 5

BrokerID Text 5 Relates to the Broker Table, where the broker’s name
can be found

Broker Table
Field Data Type Size Comment
BrokerID Text 4 Unique identifier for Broker, Primary Key –

starts with “B”
BFname Text 10 Broker’s first name
BLname Text 15 Broker’s last name

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

6

Stock Table

Field Data Type Size Comment
StockAbbrev Text 5 Unique, our Primary Key
StockFull Text 20 Full name of the company
CurrPrice Currency Current Price of the stock

Trans Table (short for ‘Transaction” table)
Field Data Type Size Comment
TransID AutoNum Unique for each transaction, Primary Key
CustID Text 5 Links to Customer table where we can find the

full customer name
StockAbbrev Text 5 Links to the Stocks table where we can find the

full name and current price of the stock
PurPrice Currency Purchase Price of the stock
PurDate Date/Time Date stock was purchased
Shares Number Number of shares purchased

4.3.3 Selecting Primary Keys

Recall that primary keys are used as unique identifiers for our data. They provide a way
to distinguish among the various “Bob Smith” customers we have. Do your tables
absolutely need primary keys? Well, no…but if you don’t have them it will be
impossible for you to create relationships between tables – and that is one of the really
powerful features of a relational database. Our Customer, Broker and Stock tables have
fairly obvious choices for primary keys.

Customers are normally given CustomerIDs that are unique to each customer, so that
becomes a very natural primary key. You could have selected Social Security numbers
for the keys but companies are increasingly reluctant to expose those numbers. Be very
careful when you select the key – values that seem unique to a customer might not be.
For example, could you have used telephone number? A person might have several
numbers, but they will provide their main number when we set up their account. The
difficulty comes when there are several people in a household who have accounts with
us. One of our customers has their son living with them. After graduation he decided to
live at home and save for a down payment on a house. Both the parents and the son have
accounts with us – but share a telephone number. Using telephone number would not
allow us to distinguish between the parent and son accounts.

The Broker table is easy. Each of our brokers is assigned a BrokerID by the state of
Rhode Island. They are licensed in other states, but RI is our home base. Rhode Island
issues unique IDs to each licensed broker which makes that license ID a natural for the
primary key.

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

7

In the Stocks table we are using the abbreviation of each stock as our key. The
abbreviations are assigned by the stock exchange and are guaranteed to be unique.

The only difficult key is the one we need for the Trans table. That table contains
CustomerID – however while CustomerIDs are unique values in the Customer table,
these values may appear in the Trans table a number of times (if you own four stocks,
your CustomerID will be in the Trans table four times). So while a Customer is
mentioned only once in the Customer table, they can own many stocks. As you scan the
list of fields in the Trans table you’ll find that none of the data fields are unique – for
example, many people can buy a stock on the same day and same price. Our solution has
been to number each transaction and use that number as the primary key. The
autoNumber data type is perfect for this – it will start at “1” and increment each
transaction from that point.

4.3.4 Relating the Tables

Our final step in the design process is deciding how the tables relate to each other. This
involves finding common fields, shared by two or more tables. You are looking for a
primary key in one table that appears in a second table as a regular field. A primary key
that appears in another table (not as a primary key) is called a foreign key. In our case,
CustomerID plays the role of primary key in the Customer table, but is a foreign key in
the Trans table. The same thinking holds for StockAbbrev; StockAbbrev appears once in
the Stock table but may appear many times in the Trans table.

4.4 Building our tables

Let’s get into Access and begin building the tables for our new Brokerage Firm. Open
Access and ask for a Blank Database. Give the filename as Brokerage.mdb
On the Table tab, create your table in Design View.

Use
Design
View

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

8

We’ll start with the Customer table.

Start by entering the names of our fields and decide on the data type for each. I know it
doesn’t make sense to define zip code and phone as Text when we are accustomed to
thinking of these as numbers – but we aren’t doing any math with them, so defining these
fields as numbers doesn’t gain us a lot.

In fact, leaving them as Text will let us use “Input Masks” that will dress the data up a bit
as we enter it. For example, phone numbers have parentheses around the area code and a
dash between the exchange number and the final part of the phone number. An input
mask will put those extra symbols in for us. The zip code doesn’t need a mask (unless
we decide to implement the new zip+4 system. Our rationale for leaving zip as text lies
with the leading zero that so many zip codes have. If we had defined zip code as a
number, the zip code 02806 would display as 2,806! Don’t worry about the masks yet –
just make sure you define each field with a specific length (refer to the data definitions
for the Customer Table).

Selecting the Primary Key
Before we start working with Input Masks and Validation Rules, let’s define CUSTID as
the primary key for the Customer Table. Click on CustID to select that field, then click
on the Key symbol on your toolbar. You should now have an image of a small key
sitting next to CustID.

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

9

4.5 Saving the Table

This might be a good time to save our work on this Customer table. Access will prompt
you to save the table and give it a name once you close this table by clicking the “X” in
the corner of the design window. Be careful not to click the “X” that shuts Access down!
When you’re prompted for a name, call the table tblCustomer. Once it closes, Access
automatically saves it. We have more work to do, so click on the Customer table ONCE
and move back into design mode.

4.6 Input Masks
Most database developers are concerned with the consistency of data – and we can do
something about that for some of our fields by using Input Masks. These are codes that
define the look of our data. In effect, they represent a template for data entry. The figure
below has a listing of the input mask symbols. In addition to providing consistency to
your data, they also help enforce your business rules. For example, when your brokers
set up a new account, we need a way to require a full phone number, one that includes the
area code. That’s a very simple rule, but the same strategy can be applied to more
complex ones.

Don’t get overwhelmed by the subtle differences between some of the input mask
symbols. For example a “0” requires a digit (but it won’t accept plus or minus signs)
while a “9” represents a digit – but this time it isn’t required that you enter one. It also
allows a space (but still no plus or minus signs).

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

10

4.6.1 Masks related to letters and other non-numeric characters

Let’s try out a few simple input mask symbols.

Mask Symbol Meaning

> Make what follows be uppercase

< Make what follows be lowercase

L Require a letter at this location

? This is a letter, but not required

For consistency we want first names to start with Uppercase characters and we want the
remainder of the name lowercase, so we need to use both “>” and “<”. Since all names
must have at least one letter we’ll required the first character – but the remaining letters
will need to be optional since we don’t know how long each name is. The mask would
be:

In English it reads… “Uppercase the first character (which is required) and then
lowercase everything that follows”. The remaining letters are all optional. Notice how
we used enough “L” and “?” symbols to fill our 10 character name field.

>L<???????????

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

11

You probably want to use a similar mask for City – I’ll leave that one up to you.
Let’s try another one – this time for State. We need to indicate that both letters in the
state abbreviation are required and that they should be uppercased. So we will start with
the uppercase symbol “>” and the use two “L” symbols to indicate that we are expecting
alphabetic letters and that they are required.

4.6.2 Input Masks involving numbers

Now let’s work with numbers. Our zip code is defined as a Text field – but we clearly
want there to be numbers in the zip code. Defining Zip as Text just indicated that we
weren’t doing math with the field.

For a mask involving digits we have a choice of:

0 Digit with no spaces, plus or minus signs – and it is Required at that spot

9 Digit OR space, but no plus or minus signs – and it is Optional at this spot

Digit OR space and allows plus and minus signs – it is Optional at this spot

Zip codes require all 5 digits so we have little choice here, since only “0” requires the
user to enter something. That will make our zip code mask be a group of 5 zeroes.

The input mask is neat because it insists that all zip codes are 5 digits long – no one can
accidentally enter a partial zip code since our mask has 5 required digits.
Phone number introduces two slight complications. The first is that area code is
something we can control – if we want to insist that all of our phone numbers include the
area code, then we should use the “0” symbol for it. If area codes are optional, then we
need to indicate that by using “9”. I think it’s far too chancy for a business to omit the
area code, so we’ll require it. In a sense, the mask is helping to enforce one of our
business rules – that we demand an area code from each customer.

>LL

00000

Required Area Code: 000 000 0000
Optional Area Code: 999 000 0000

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

12

4.6.3 Input masks with “literals”

The second issue is that we want our brokers to be able to enter the phone number
without having to enter the parentheses around the area code and the hyphen that
separates the three digit Exchange from the last four digits. Not only does it make things

easier for our brokers, but it also cuts down on
data entry problems. If you check out our list
of mask symbols you’ll find that any “literal
characters” need a backslash before them. So
if you wanted an “L” to be included as the user
entered the data, there needs to be a way to
distinguish the “L” that you want displayed
from the “L” that is our normal mask symbol –
and the backslash does that. Since none of the
symbols in the phone number can be confused
with any current mask symbols, I suppose we

can get away without using the backslash. In fact, try entering the mask without the
backslashes and see what happens!

Finally, CustID is defined in our data dictionary as starting with an uppercase “C”
followed by 4 digits. We can use a mask to automatically get the “C” in front of each
number. That way, our brokers can just enter the customer’s number and we’ll
automatically put the “C” in front of it. As with the phone number, we need to use the
backslash to be sure our “C” doesn’t get confused with the mask character.

You can enter either…
(000)000-0000

Or
\(000\)000\-0000

\C0000

Literal means “for real”. We often
hear people say that something
literally happened. With computers
a “literal” means “we want that
actual character”. So if we see the
letter “L” in a mask, is it a mask
symbol that stands for a “letter” or
does someone literally want the
letter “L” to be in this spot?

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

13

4.7 Validation Rules

In addition to input masks, there are other ways to monitor data as it gets entered. A
validation rule can make sure numbers fall within specified ranges or that words come
from an approved list. For example, our brokers are each licensed to deal with customers
in Massachusetts, Connecticut or Rhode Island…so our customers have to be from one of
those three states. If a broker tries to sell to someone in another state we can issue a
warning message and refuse to accept that customer.

Three entries on the table design are involved in the validation:

1) Validation Rules

2) validation text and

3) the field’s description.

Input Mask Tricks and Complications!

Access would prefer to save room where it can. Telephone numbers are a
great example – do we really need to store the two parentheses and the hyphen
for every telephone number? Access would prefer to use the mask for display
and data entry purposes, but ‘wants’ to store the telephone numbers without all
the extra stuff.

In the case of our Customer and Broker IDs, we had hoped the “C” and “B”
would get entered for us. If those characters don’t actually make it into the
tables, we’re left with IDs that are just the digits! If you searched for customer
“C1234” you would never find them if Access stored the ID as “1234”.

We need a way to have the input mask “literals” stored in the table when we
decide that is best for us…

The solution is to follow the mask with a semicolon and the number zero –
Access takes that as an instruction that it must store the mask literals.

You should correct both the CustID and BrokerID masks…

\C0000;0
\B0000;0

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

14

4.7.1 Validation Rules describe what valid data looks like. For our “State” validation,
click on the State field in your table design and then on Validation Rule. We can specify
the rule in one of two ways.

The use of “IN” says that the entry must be “IN” the following list of items. The quotes
around each item follow common computer practice that says words need quotes,
whereas numbers don’t get quotes.

Check out this list of other validation rule examples.

Handy ways to represents ideas using math symbols

A number can’t exceed 20 <= 20
A number must be at least 20 >= 20
A number must be between 20 and 40 >= 20 and <= 40
Same idea… but using the word “between” Between 20 and 40
The word must end with a “Y” – the asterisk is a wildcard Like “*Y”

4.7.2 Validation Text describes the error message to display when someone violates the
rule. You can leave it blank, but that doesn’t make much sense. Why would you prevent
data entry without explaining why the data was rejected? The message is simple text that
you want displayed. In our case the message would be something like:

4.7.3 Description is the area to the right of each field definition. Any text you place
there will show on the status bar at the very bottom of the screen. We can use it to guide
our brokers through the data entry process – a quick reminder that we only sell in three
states. Consider it a warning that they can see before entering a wrong state!

 “MA” or “CT” or “RI”
or

 In (“MA”, “CT”, “RI”)

Our Customers Must Live in MA, CT or RI – please verify customer’s location

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

15

Collecting Our Thoughts

Let’s take a pause and review what we’ve done. Much of the table design is a review of
what you did while setting up the “Computer_Survey” database in Chapter 3. Our
Brokerage system has a few more tables, but the design process has been very similar.
The new features are centered on making data entry a bit easier and at the same time a bit
cleaner. We’ve used both input masks and validation rules to attempt to keep our data
consistent. We don’t want some people entering “ri”, others “Ri” and some “RI”. The
input mask helps to keep the look the same. Our use of validation rules has helped
enforce some of our simple business rules. Those rules apply whether you are entering
data directly into the tables – or using forms (you learn more about forms in Chapter 5).

4.8 Building our other tables…

Since we have the data dictionary for each of the remaining forms, I’ll move through
those fairly quickly and leave most of the work to you. The use of defaults and lookups
are the only new feature we’ll introduce.

4.8.1 Building the Broker Table

There are only a few things to think about. Each brokerID is 5 characters long, starting
with a “B”. It’s just like CustID, so we can use a similar input mask.

The mask says “we start with the letter “B” then require 4 digits. Remember to use the
“semicolon zero” at the end (we want in insist that Access stores the B as part of the
BrokerID).
 \B0000 ;0

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

16

The broker’s first name can use a mask that automatically applies the correct case –
uppercasing the first character and lowercasing the remainder. Since we don’t know how
many letters are in the name, only the first letter will be required.

Finally, the key needs to be set to BrokerID. That completes the Broker table!

4.8.2 The Stock table is also fairly simple. Each stock has a unique abbreviation that
we use as our primary key. We also need to know the full name of the stock and its
current price. Nothing special needs to happen.

4.8.3 The Trans table is a very active place!

This is where we record the stocks a customer currently owns. We’ve already discussed
the problem of finding a primary key for this table. I mentioned that a professional
database designer will often look for combinations of fields that make a record unique.
In this table CustID and PurDate might be a good combination. Since the date can
include the time of purchase, it would be impossible for a customer to buy two stocks at
exactly the same moment in time. These composite keys are very useful and might be a
good approach for our Trans table. We have, however, decided on the other common
approach to recording transactions – that of sequentially numbering the transactions.
Using an AutoNumber as our data type will take care of the details for us; each
transaction will be assigned a number one higher than the previous one.

You should have no trouble setting up this table since we’ve already dealt with CustID
and StockAbbrev. Price is defined as currency – one of those fields that don’t give us an
option to specify size.

4.9 Setting Defaults

PurDate is defined as Date/Time which is another data type that doesn’t let us specify
size. The one interesting thing we can do is provide a default date. Unless the broker
enters a different date (and why would they?), the date of the transaction should match
today’s date. We can tell Access to enter the current date automatically – by default.
The current date can be found by calling on a function in Access called Date(). Setting
the default is very simple. When you’re defining the PurDate field, click on Default
Value (two down from Input Mask) and type Date(). Be careful not to put a space
between the two parentheses. While you’re setting the date field notice that various
formats available to you. General date will display both the date and time – which might
be helpful if you need to display exactly when a customer bought or sold a stock.

>L<????????

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

17

4.10 Lookup Tables

Let’s check out one final approach to keeping our data clean. When a broker completes a
sales form indicating that a customer has purchased a stock, we want to be sure the name
of the stock is correct – let’s not leave it up to the broker to get the abbreviation correct.
Each of the valid abbreviations exists in the STOCK table. Access provides a fairly
simple method of making the values in one table available to another table during data
entry – it’s called a Lookup. As the broker goes to enter the name of the stock, a drop-
down list will display a list of the valid abbreviations from the Stock table. Well, the
technical name for the list is either a list box or a combo box. Each of these is a list that
drops into place as the user clicks an arrow. The difference is that a list box limits you to
using an item from the list – while a combo box provides a spot up top for the user to
enter some other value (well, you actually can limit a ComboBox to the existing list by
setting the value of the Limit to List property of the Combo to the “YES” setting).

Sometimes arguments are useful!

Every function name ends with a set of parentheses – that’s how you know the
thing is a function. Sometimes the parentheses enclose arguments – basically
one or more values that the function needs to work with. A good example is the
TRIM function that is used when you need to chop extra spaces off a field; it
needs to know what field needs to get trimmed.

e.g. Trim (Lname)

The Date() function doesn’t need any additional arguments, so the parentheses
are empty.

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

18

The text you enter in a ComboBox also provides a pretty neat added functionality to the
Lookup – if you enter an “S”, for example, you will be taken directly to the stocks that
start with “S”.

Start the process by clicking on the StockAbbrev field in the Trans table (design view).
From there, click on the Lookup tab and select ComboBox as the Display Control (that
is, how would you like the lookup displayed).

Once Access knows how the data should be displayed, it needs to know where the data is
coming from. In our case, the data is sitting in the Stock table…so move to Row Source
Type and select Table / Query. Basically, Access needs to know what kind of source will
fill the rows of the list.

Defining the lookup of
Stock names

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

19

Now that Access knows the data will come from a table, we need to name that table.
Click on Row Source and use the drop down list to select Stock as the name of the table.

One of the problems with a ComboBox is that you are letting the user type something –
in our case, the name of a stock. The name they type might not be a real stock
abbreviation and we need a way to protect against that. One solution is to set “Limit To
List” to “yes”. Now the user can take advantage of the ComboBox’s ability to scroll to
the names that match the starting character the user might have entered – and we can still
protect ourselves from a user who might enter an incorrect name.

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

20

At that point we’re done! You might be asking how Access knows what we want
displayed from the Stock table (given that three fields are in that table). Actually, it
knows we want StockAbbrev – since that is the related field in the Stock table.
When you get around to entering data, a list becomes available – and you need to make
your selection from that list.

4.11 Establishing the Relationships

Now that each table is ready to go, let’s spend a moment tying them together. There are
two ways to reach the relationships screen – you can select it from the Tools menu or
click the tool on the main toolbar.

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

21

Once you have the relationship screen, click each table and the ADD button until all four
tables have been added to the Relationship Diagram. You can also add the tables by
simply double-clicking each table (now you don’t need to hit the ADD button for each
table!)

Note how the primary key for each table is highlighted in bold. You’ll want to find the
common fields in each table and drag the mouse from one of those fields to the other to
make the connections. Most of the relationships will be heading to the Trans table. As
you drag from CustID in the Customer table to the CustID in the Trans table a dialog box
pops up asking you to Create the relationship. You can also decide to enforce Referential
Integrity.

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

22

4.12 Referential Integrity

Your database would work without referential integrity but it’s a great safety net.
Basically it says that you can’t have a record on the many-side of a relationship if a
corresponding record doesn’t exist on the one-side. In our example, you can’t have a
transaction in the Trans table if that customer doesn’t exist in the Cust table. In a similar
fashion, the broker and stock mentioned in the Trans table better exist as well! The
details are all handled by Access – so if someone’s willing to be sure your database
doesn’t have loose ends everywhere, why not take advantage of it? While you’re at this
Relationship dialog, notice the Cascading Deletes and Updates. These help with database
maintenance. If you delete a customer from the customer table, it might be nice if all
reference to that customer disappears from any tables that mention them. Any updates
will ripple through the database as well – provided you checked the box. I know this
sounds pretty neat – but it’s also somewhat dangerous, so be careful… we won’t be using
Cascades in this project.

Your final Relationship Diagram should resemble this figure. Move the tables around
until the lines aren’t crossing each other. If your tables don’t display every field, hold
your mouse on the bottom edge of a table and drag downward (stretching) until all fields
are showing.

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

23

4.13 Entering Some Sample Data

Let’s enter at least one record to see how our input masks, validation rules and defaults
are working. We will use the actual tables for our data entry – but, keep in mind that
entering data directly into tables is very rare. In “real” databases, the database developer
will provide data entry forms (some kind of user interface) rather than allowing users to
play with the actual tables! Later in this book (Chapter 10 and 11) you’ll learn how to
build web forms that let people on the internet enter data into your tables.

As we start entering data, keep the referential integrity rules in mind. You can’t start
entering transactions until you have a customer, a broker and a valid stock abbreviation.
As you enter data into the Customer and Broker tables, notice how First Names are
automatically capitalized correctly, notice how both the Customer ID and Broker ID have
the proper starting letter. As you enter a transaction, try to violate our validation rules –
for example, try selling to a guy from Vermont.

4.14 Linking to Our Customer Photos

How are we going to enter a photo? You can’t exactly enter it the way you would a name
or number. I assume the images are located somewhere on your hard drive. Begin by
opening the tblCustomer table and right clicking on the Photo field for one of our
customers. That should open a context menu with Insert Object as one of our choices.

We now have a choice – we can create a new object or use one that already exists as a
file. In our case, the images are already stored on our hard drive, so we will select
Create from File and then Browse for the photo of that customer.

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

24

Finally, we need to establish a Link to that image, so check the Link box.

Is this the ideal approach to using photos in the database? It is for us…because it is very
simple and pretty much foolproof. There is, however, a very heavy toll for that simplicity
– every image comes with components that help Access display the image. This is going
to have a big impact on the size of our database. Professional database developers would
store the images on the hard drive, but the database would only have references to them
(not Ole Links). This approach keeps the database from growing as each photo is added
– but you need to understand quite a bit about computer code to get this more efficient
approach to work.

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

25

NOTE: Images are discussed in the Geeks for Chapter 5. For now, realize that images
can be stored in a number of file formats. Files with “BMP” extensions are huge, but
work well as ole objects. Files with “JPG” extensions are in a compressed format and
much smaller than bmp files – unfortunately, you must have Microsoft Photo Editor
installed on your computer in order for the ole links to work. Photo Editor was
included with Windows until Windows XP Service Pack 2, when Microsoft ceased
including it. If you can install Photo Editor, you will have no problems including images
as part of your database!

4.15 Summary

Could the system use a few more refinements? I guess so, but we’ve made quite a bit of
progress and have put some safeguards in place to help ensure the quality of our data.

We’ve made a pretty good start on the Brokerage database, starting with a review of
Entity Relationship Diagrams – at least the concept of ERDs and how it relates to table
design. Entity Relationship Diagrams were introduced in the “Geeks” of Chapter 2.
View the ERDs as a way to focus your thinking about your database at a fairly high level.
Too many people create poorly designed databases, simply because they move
immediately into entering field names and lengths into their tables – before they even
know what tables they might need!

Much of the work in this chapter has built upon simpler databases developed in Chapters
2 and 3. In chapter 4 we began to refine our table design by creating validation rules that
monitored the quality of data being entered. These rules provided a way to make sure
customers can only come from states where we are licensed to sell stocks. The use of
Input Masks helped us provide a consistency to data that might not have been there
without the masks. Those masks also provided a mechanism to enforce simple business
rules – we require an area code for all phone numbers. Finally, we used lookups as one
more means of reducing errors in our data. Choosing a stock abbreviation from a list of
valid abbreviations makes a lot more sense than letting the brokers take a stab at the
abbreviation on their own! Finally, referential integrity provided a way to ensure that a
customer and stock existed before we recorded a transaction.

If you have an interest in writing computer code, check Microsoft’s web site

for suggestions on writing the necessary code. The Knowledge Base Article is

285820 – How to display images from a folder in a form, a report, or data

access page

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

26

The quality of our data has benefited from a few simple techniques:

Just for Geeks
Refining our Database Design Skills
(an Introduction to Normalization)

Many of us design databases by the seat of our pants – hoping the decisions we make for
tables, fields and keys will create a functional database. Sometimes our intuitive design
works well and sometimes we find ourselves facing a huge mess. The database might not
handle the queries we had planned on, and might not create the forms and reports our
boss wanted. Mistakes with the design can also lead to real hassles when we try to add,
modify or delete data.
Unfortunately, it’s sometimes hard to catch design errors until the database is populated
with some sample data – once real data starts arriving, a re-design of the database can be
expensive and disruptive to the business. It could also be an opportunity for the designers
to sharpen their resumes… Luckily database researchers have considered the process of
database design and have some suggestions that can help.

The design process is called normalization. It takes you through a series of steps that
gradually move your data into a design that reduces data redundancy (repeated data) and
that organizes data into tables with related data. The intuitive ‘rules’ we established in
Chapter 4 are very similar to the rules of normalization. We argued that a table should

Input Masks Provide the user with a guide to how we want the
data to look – forcing capitalization of names,
requiring full telephone numbers and insisting that
Customer and Broker IDs start with the appropriate
letter

Validation Rules Once the user enters data, we can have Access look it
over to determine whether it follows the rules we’ve
set up. In our case, the State must be MA, CT or RI

Lookup Values We can make sure there aren’t data entry problems
by getting values from another table. In our case,
Stock Abbreviations could be a major problem if we
left it up to our Brokers to remember each of the
thousands of stocks we can select from.

Referential Integrity It would be a disaster if we recorded a stock purchase
and had listed an invalid Customer ID – someone
who didn’t exist. Referential Integrity insists that the
“one side” of each relationship actually exist.

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

27

contain data related to a single entity. For example, the Customer table should only
contain data related to a customer – their name, address and phone. The Customer table
is certainly not a place to be listing stock purchases. We also argued that a table should
not include items that repeat. If a CD has many songs on it, the songs should land in
another table.

The common sense rules of Chapter 4 have been formalized by database researchers as a
series of normalization steps. Each stage in the process is called a ‘normal form’. The
first stage is “First Normal Form” and the last stage is often “Third Normal Form”. Yes,
you can go to higher forms – but it isn’t usually required. Since the stages build upon
each other, a database that is in 2nd Normal Form must already be in 1st Normal Form.

First Normal Form

Let’s use our Brokerage database as we move through the normalization process. Our
first job is getting the data into First Normal Form (often written 1NF). In 1NF, there are
two goals:

There should be a primary key that uniquely identifies an entity (entity in the sense of an
object such as a customer, a department or a line on sales receipt). Equally important,
every column of data (fields) should relate to that primary key. If I know the key, can I
tell you who that customer is, where they live and who their broker is?

A second goal of First Normal Form is to achieve atomicity – the term atomic refers to
something that can’t be divided. In database terms, atomic means that a field should
contain data that can’t be further subdivided and that there should be only one instance of
that data on each row.

Take a look at this early attempt to arrange data in the Brokerage database. I’ve got a
CustID, the customer’s name and fields to store the name of each stock they own.

CustID CustName Stock1 Stock2 Stock3
111 Bob Smith IBM,100 shares

$30, $32
APPLE, 200 shares
$45,$39

APC, 100 shares
$60,$63

222 Alan Davis DELL, 200 shares
$65, $67

INTEL, 100 shares
$80, $86

APPLE, 500 shares
$40, $39

333 Duke Buckley APPLE, 100 shares
$37, $39

IBM, 500 shares
$35, $32

INTEL, 200 shares
$82, $86

444 Susan Pride DELL, 100 shares
$66, $67

APC, 100 shares
$59, $63

IBM, 1000 shares
$27, $32

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

28

The rules for First Normal Form tell us to watch for fields that aren’t atomic. Looking at
the CustName field you can see that it holds both first and last names. This could be a
problem if we ever need to sort the data… how would you sort by last name? Since each
field should hold only one piece of data, let’s divide the name field into two fields Fname
and Lname.

CustID FName LName Stock1 Stock2 Stock3
111 Bob Smith IBM,100 shares

$30, $32
APPLE, 200
shares $45,$39

APC, 100 shares
$60,$63

222 Alan Davis DELL, 200
shares $65, $67

INTEL, 100
shares $80, $86

APPLE, 500 shares
$40, $39

333 Duke Buckley APPLE, 100
shares $37, $39

IBM, 500
shares $35, $32

INTEL, 200 shares
$82, $86

444 Susan Pride DELL, 100
shares $66, $67

APC, 100
shares $59, $63

IBM, 1000 shares
$27, $32

The other atomicity issue relates to the repeating Stock field. Clearly we have the same
problem we had with the Name field. The Stock field should not contain anything more
than the name of the stock. Our attempt to record the number of shares, the purchase
price and current price might make sense – but it violates the atomicity rule.

The other issue is that we have a different Stock field for each stock a customer buys –
sure each field has a slightly different name, but we know the data is really the same.
This arrangement is exactly what I might do if this were an Excel spreadsheet. In fact, I
do have a spreadsheet to store my grades and I have columns labeled Exam1, Exam2 and
Exam3. I also have columns for each assignment. It works for simple spreadsheets but
makes life difficult when the data is in a database. Imagine searching for people who
own IBM stock. Where would you look? Should your query search Stock1, Stock2 or
Stock3? The arrangement in this early version of the table also makes poor use of space
– some people fill the three stock fields while other people have only one or two stocks.
What happens when our best customer decides to buy two more stocks? Do we need to
modify the database by creating two new fields (Stock4 and Stock5)? The answer is that
these repeating fields are bad news and need to be eliminated. Atomicity says we should
only have ONE field named Stock and that the Stock field should contain only ONE
piece of data.

Here’s what the table looks like so far. Notice that I’ve created separate fields for Shares,
Purchase Date, Purchase Price and Current Price. I’ve also beefed it up a bit with more
details about the customer.

CustID FName Lname Street City State Zip Stock Shares PDate PPrice CPrice

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

29

Before we leave First Normal Form, recall that there are two requirements.

Selecting a Primary Key

We’ve taken care of the second requirement, but our table doesn’t have a primary key
yet. You might be tempted to use CustID as the key – but does that help us determine the
stock they bought? Our Brokerage firm hopes each customer will buy many stocks, so
simply knowing the CustID will not help us identify the stock. Customer 1234 will have
purchased IBM, APPLE and other stocks – knowing just the CustID doesn’t determine
which stock they bought this time.

If we knew the Customer AND the Purchase Date we still don’t have enough to
determine what they bought since they might have bought several stocks that day
(actually the Date that Access records includes the time down to a fraction of a second –
so Date would be a great timestamp for the transaction – but for the sake of our
discussion, assume it is just the date!).

If we know the CustID, the Date AND the stock they bought, then we would be able to
determine the Customer, how many shares they bought, the purchase price and (knowing
the Stock) the Current Price. So, let’s go with a composite key (for now) that includes
CustID, Stock and PurchaseDate.

That satisfies the requirements for First Normal Form – but leaves our database a long
way from being a perfect design.

Second Normal Form (2NF)

Second normal form ONLY APPLIES TO TABLES WITH COMPOSITE KEYS!!! If
your table has a single field acting as the primary key, then you are OK at this point.
Since our table has three fields combining to form the primary key, we need to follow the
rules for Second Normal Form.

The 2NF Rule requires that each field be dependent on the ENTIRE primary key. If you
only have one field as your primary key, relax… For the rest of us, we need to examine
each field and ask ourselves whether we need the entire primary key to know the value of
the field we are examining – or could we determine the value of the field by knowing just
a piece of the primary key. Dependencies that require only a piece of the key are called
Partial Dependencies.

1. Each row must have a primary key that uniquely identifies that row of
data

2. Each field must contain a single piece of data and the field must not
repeat

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

30

Let’s check out a few fields to see if we have any partial dependencies. I’ve shaded the
primary key for you.

CustID PDate Stock FName LName Street City State Zip Shares PPrice CPrice

Let’s start with FName… could you know the person’s First Name is you knew the
CustID? Well, yes…if we have the CustID, we should be able to identify a customer’s
name and address. Could we learn the name of the customer if we knew the Purchase
Date? How about learning the customer’s name and address if we had the name of the
Stock? In each of these cases, the customer’s name and address are dependent only upon
the CustID – and not dependent upon the other components of the primary key. You can
see the same partial dependencies when you test Purchase Price, Shares and Current
Price. These fields have nothing to do with the CustID.

How do we eliminate the partial dependencies? The standard approach is to list the parts
of the key as well as the key in its “composite” state. In our case, we would get:

The second step is to find all the fields that depend solely upon CustID, and those fields
that depend on PDate, Stock and finally those fields that require the entire composite key.

We might end up with something like this:

Each element of the key that was able to “collect” dependent fields will become a
separate table. PDate is crucial to identifying a stock transaction, but nothing depends
solely upon the Purchase Date – so PDate will NOT become its own table.

CustID
PDate
Stock
CustID/PDate/Stock

CustID  FName, LName, Street, City, State, Zip

PDate  ?????

Stock  CPrice

CustID + PDate + Stock  Shares, PPrice

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

31

Once the partial dependencies have been eliminated, we have our data in Second Normal
Form!

Notice how we are forced to create additional tables as the database becomes more
normalized. These tables will also need to be joined together at some point. Working
with multiple tables and the processing required to join tables (in order to generate forms,
reports and queries) will tend to slow things down. Because of the increase in tables and
the overhead of joins, some database systems stay somewhat un-normalized in places in
order to enhance performance.

Third Normal Form (3NF)

Third Normal Form is focused on finding “transitive dependencies”. Transitive
Dependency sounds pretty fancy, but is actually very simple. It is similar to partial
dependencies, but this time, the question is “do any fields depend on any other fields?
We aren’t talking about fields that depend on keys.

Let me create a situation to illustrate these transitive dependencies. Let’s say that our
brokerage has three classes of customer. Our “Premier” customers pay a yearly fee to
have access to more timely stock quotes, enhanced stock research reports and they also
get a substantial break on the transaction fees. Our “Classic” customers pay less than the
Premier customers. Their yearly fee requires a higher transaction fee, delays stock prices
by 15 minutes and provides brief stock research reports from our analysts. Classic
customers must pay an additional fee for each in-depth report they want. Our third
category of customers are the “Visitors”. We charge a fairly substantial transaction fee
and provide very basic reports on each stock. The advanced research reports are
unavailable at any fee.

Our Customer table now appears as:

CustID FName LName City State Zip CustClass TransFee

Let’s examine the dependencies. CustClass (Customer classification…Premier, Classic,
Visitor) depends on the CustID. If I know the CustID, I can tell you the Customer Class
they are in. The problem comes with Transaction Fee (TransFee). The TransFee
depends on the CustClass – not the CustID. That means that the TransFee has a
“transitive dependency” on CustClass. To get our data into Third Normal Form, this
transitive dependency must be eliminated by creating a new table – with the determining
field (CustClass) as the primary key.

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

32

We could call the new table tblClasses. It would include both CustClass (the Primary
key) and TransFee.

CustClass TransFee

In order for us to link a customer to the tblClasses table they must share a common field.
That requires us to leave CustClass in the Customer table.

CustID FName LName City State Zip CustClass

Before we leave this Geeks issue, let’s draw each table and show how they relate to each
other. It may seem odd to see Stock on the many side of the relationship for the table
with CustID + PDate + Stock as the composite key – but remember, the combination of
the three will be unique; the individual elements of the key CAN repeat.

CustID FName LName City State Zip CustClass

CustID PDate Stock Shares PPrice

CustClass TransFee

The process of normalizing tables can take a while to get the hang of, but is well worth
the effort. Normalization helps move your data into an organization that leads to fewer
anomalies – that is, fewer weird things can go wrong when adding, deleting or modifying
data. It also provides a design that is more likely to generate the forms, reports and
queries your database is expected to handle.

Stock CPrice

1

∞

1

1

∞

∞

(Customer Table)

(Transaction Table)

(CustomerClass Table)
(Stocks Table)

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

33

Key Terms

Primary Key Status bar
Foreign Key List Box
Composite Key Combo Box
Autonumber Junction Table
Referential Integrity Bridge table
Cascading Deletes and Updates Linking Table
Input Masks Functions
Validation Rules Arguments
Validation Text Object Linking and Embedding (OLE)
Default

Review Questions:

1. Imagine a table that holds the names of individual stores within a chain of
stores. The Stores table has a primary key of StoreID. A second table lists the
employees. Each employee only works for a single store. The Employee
table includes both the EmpID and the StoreID. In the Employee table,
StoreID is playing the role of…
a) Primary key
b) Foreign key
c) Composite key
d) Junction key

2. For the Stores/Employees database (question #1), Referential Integrity for the

relationship between Employees and Stores would say
a) that a store had to exist in order for an employee to be assigned to it
b) that each employee had to be assigned to only one store
c) that a store could have many employees
d) that an employee could be assigned to many stores

3. Validation Rules are used to
a) verify that your database name is valid
b) check field lengths for valid sizes
c) verify that field names are not longer than 64 characters
d) test input data for specific values

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

34

4. When defining your tables, messages written in the Description area will
a) show up on the Status bar during data entry
b) appear only when data entry errors are made
c) display only in design mode
d) are strictly for documentation purposes

5. The Status bar is located

a) at the very bottom of the screen
b) at the top of the screen
c) next to every field name when you are in design mode
d) just under the toolbar

6. A company has a database with employees mentioned in many tables. When

an employee leaves the firm, the database administrator wants that employee
to disappear from each of the other tables, once they have been deleted from
the Employee table. The easiest approach would be to use the
a) ‘related deletes’ feature
b) ‘cascading deletes’ feature
c) ‘associated deletes’ feature
d) ‘correlated deletes’ feature

7. Which input mask requires four characters and converts them all to

uppercase?
a) >LLLL
b) <LLLL
c) >????
d) <????

8. Gatehouse Manufacturing requires all part numbers manufactured in-house to

start with a “G” followed by up to 4 characters. The appropriate input mask
would be
a) G????
b) /G????
c) \G????
d) !G????

9. If Gatehouse Manufacturing wanted that “G” to land in their tables, the mask

would need to end with
a) REQ
b) ;
c) ;0
d) :R

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

35

10. Database designers are often faced with many-to-many relationships. For
example, a baseball player can play at many positions and each position can
be played by many players. These many-to-many relationships can be
eliminated by
a) adding a junction table that breaks the M:N into two 1:M relationships
b) saying “no” when asked to engage referential integrity
c) creating a validation rule stating which positions a player can play
d) establishing a lookup table that limits a player to one position

Design Exercises

Draw an Entity-Relationship Diagram for the following two databases. Begin by
identifying the entities (objects) in each system. Remember, these entities typically
become your tables. Be sure to look for ways to relate the entities to each other. Label
the related tables as one-to-many or many-to-many. Indicate the primary keys and use
these to relate your tables. Once you’ve settled on the specific tables, you can add
attributes to them (that is, what fields should be in which tables). You may need to add
tables (that is, you might need a junction table for one or both examples).

1. A local college wants to establish a database to store data about each student and

data about each section of a course. They also need a way of listing the students
who are registered for each section.

2. Barton Community College is trying to help their commuter students establish

friendships with fellow students. Their thinking is that a student is more likely to
stay in school if the student feels connected to the school in some way. They
have decided to offer $20 bookstore coupons to students who are actively
involved in club activities. To monitor club activity, the Director of Activities has
decided to establish a small database to store data about each student who has
joined a club as well as storing data about each club. Once they have the list of
students and the list of clubs, the director wants a way of tracking the club
activities each student participates in. So, the Drama club runs a fund raising car
wash, the club will be required to record who helped out.

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

36

Exercises

1. Create a database that tracks airline fights as well as the passengers having tickets
on each flight. You should name the database Airline – be sure to keep it on your
disk, as it will be used again in Chapter 5 to create Forms, Chapter 6 to create
Reports, Chapter 7 to play with Queries and then in Chapter 8 to practice with
SQL statements. Once you have a web site built for the airline, we will create a
Web Form to let passengers search for flights and another form that will let airline
personnel get passenger lists for particular flights.

In this chapter you will establish the tables and their relationships. As you build
the tables, there will be opportunities to create input masks, validation rules and
lookup lists.

There will be two tables in this simple database. The Flights table will include
only data regarding the flights. A flight number is unique – once used, we never
use that number again. Here’s a data dictionary to help you create the table:

Table: tblFlights
Field Data Type Length Mask/Validation Rules
Fnum Text 5 Let it start with an “F” followed by 4 digits
Depart Text 15 Should be ALL CAPS
Destin Text 15 Should be ALL CAPS
DateDep Date/Time Defaults to today’s Date on data entry
Capacity Number None of our planes can carry more than 100

people

The Passenger table lists the passenger’s name, the flight they are on, the price of
their ticket (we don’t all pay the same price for a seat on a plane – airlines call it
yield management). Each passenger is assigned a unique PassengerID. Our
company advertises a commitment to low prices – we say that tickets are always
in the $75 to $200 range. Be sure the TicketPrice gets checked for any input
errors; the data should always be in our price range. The ticket agent needs to
receive an error message if they enter an invalid price.

Table: tblPasseng
Field Data Type Length Mask/Validation Rules
PassID Autonumber
Fnum Text 5 Look this value up in the Flights table
Pfname Text 15 Start with a Cap, then shift to lowercase
Plname Text 15
TicketPrice Currency Needs to be within our price range.

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

37

Issues with the Lookup: (Before testing the Lookup, you should enter a few
flights into the Flights table.) Lookup lists normally include a single field. In our
case, the first field in the Flights table is Fnum. That’s actually the value we want
to look up – but it will be useless unless we can also see the Departure and
Destination fields and the date of the flight. As you establish the lookup, notice
the entry for number of columns. Since you want to see more than one field, this
value will need to be set to something other than 1. You may need to save the
table design and try entering some data so you aren’t making changes to the
lookup without seeing how they impact the appearance of the lookup. Other
properties of the lookup may also need adjustment; in particular, the Field widths
and the List width. Start with the Field Widths. Now that you have 4 columns
displaying, you can set their widths in inches – with a semicolon between each
one. It might look something like this: .3 ; .5 ; .5 ; .3

The list may still not display fully. If it doesn’t, try changing the List Width from
its current setting “Auto” to some inch measurement.

Once the tables are established, define the relationships – look for common fields.
When prompted to create the relationship, be sure to check Referential
Integrity…we don’t want people listed for flight that don’t exist!

Finally – enter some data. I’ve included some test data for you. Most of this is
clean data, but some will test your validation rules. For Flight F2222, correct the
Capacity to 90 after you check the validation rule.

Sample Data for tblFlights

Test Data for tblFlights
Fnum Depart Destin DateDep Capacity
F1111 Boston Chicago 9/20/2013 100
F1234 Boston Chicago 10/15/2013 100
F2222 Providence Denver 10/15/2013 125 (validation check)
F3333 Boston Chicago 10/6/2013 80
F4444 Boston Miami 10/5/2013 75
F5555 Boston Miami 10/4/2013 100
F6666 Providence Denver 9/23/2013 100

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

38

Sample Data for tblPasseng

Once you’ve checked your validation rules, correct the prices for passenger 2 to
$130 and passenger 3 to $150.

Test Data for tblPasseng
PassID Fnum Pfname Plname TicketPrice
1 F1111 Al Jones $90
2 F3333 Sally Smith $300
3 F2222 Jack Adams $50
4 F1111 Alice Smayda $120
5 F3333 Patrick Woods $150
6 F2222 Michael Harland $175
7 F3333 Johanna Cuttem $125
8 F2222 Dick Sargent $100
9 F1234 Kathy McMaster $125
10 F4444 Dick Frasier $140
11 F4444 Chris Gavin $120
12 F5555 Sue Williams $135

Once you have the tables ready, Print the table designs, the relationship diagram
and the data for each table and pass these in to your instructor. A simple way to
do this is to display the table design, table data or the relationship diagram in
Access, hit your “Print Screen” key (copies the image to the clipboard) and then
paste the image into a Word document.

An Introduction to Database and the Web – Chapter 4 “Database Design – Brokerage”

39

